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Abstract—In this paper a comparison of discrete time PID, PSS controllers is presented through small signal stability of power system 
comprising of one machine connected to infinite bus system. This comparison achieved by using a new approach of discretization which 
converts the S-domain model of analog controllers to a Z-domain model to enhance the damping of a single machine power system. The 
new method utilizes the Plant Input Mapping (PIM) algorithm. The proposed algorithm is stable for any sampling rate, as well as it takes 
the closed loop characteristic into consideration. On the other hand the traditional discretization methods such as Tustin’s method is 
produce satisfactory results only; when the sampling period is sufficiently low. 

Index Terms— Dynamic stability, Power systems, PID controllers, Digital redesign, Discretization, Discrete systems. 
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1. INTRODUCTION 
he analog control system is a system in which 
continuous-time controllers are employed to control the 
behavior of a continuous-time plant. On the other hand, 

a digital control system includes discrete-time controllers 
together with a continuous time plant, where the 
interconnection between digital and analog parts is typically 
realized through sample and hold devices. For many years, 
analog controllers have dominated the control of power 
systems but digital controls have continued to improve in 
cost and usability in the past several years. This has made 
digital controls more appealing to replace analog control in 
some devices. The increasing complexity of power system 
requires the use of digital devices. They are widely spread 
and play an essential task in the operation of power systems. 
Several kinds of digital controlled devices are used in 
practical in power system now days, such as digital 
automatic voltage regulator (AVR), digital 
proportional-integral-derivative (PID) controller and digital 
power system stabilizer (PSS) [1]. In a distributed power 
system it would be very helpful to have the controllers alert 
the operator of a potential problem. 

There are several reasons why digital control is desired 
over analog control. These reasons also apply in converters 
and in distributed power systems as a whole. The following 
are citations directly from papers [2], [3], [4] that describe the 
reasons of using digital control system than analog control 
system. Potential advantages of digital controller 
implementation include much improved flexibility, reduced 
design time, programmability, and elimination of discrete 
tuning components, improved system reliability, easier 
system integration and possibility to include various 
performance enhancements. The opportunity to realize 
non-linear, predictive and adaptive control strategies 
provides a strong reason why digital control could yield 
worthwhile advantages compared with traditional analog 
control concepts [5]. 
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Some advantages of digital control system are as follows [6]: 

a) Greater range of control algorithms can be used e.g. 
adaptive control techniques. 

b) Changing a few parameters or implementing a 
complete new strategy in most cases is just a matter 
of recompiling a software program model, which 
on contrary to analog control system that changing 
components. 

c) Relatively low cost and high computational speeds 
can be provided with almost any size process. 

d) The ability to interface readily with other computer 
systems and integration with remote systems. 

e) Easier to implement complicated algorithms. 
There are many different approaches to designing 

discrete-time controllers for a continuous-time system in a 
feedback configuration. The simplest and most conventional 
approach involves the approximation of predesigned 
continuous-time controller transfer functions with 
discrete-time ones using some particular scheme. This 
process is therefore suitably called local discretization, since 
the discretization is applied locally only to the controller 
without consideration for the overall closed loop system 
performance. To account for this, Markazi et al. in [7] and 
Markazi in [8] proposed a discretization method called the 
Plant input Mapping (PIM) method [9, 10, 11, 12 and 13] 
which is directly applicable to single input-single output 
(SISO) as well as multi-input multi-output (MIMO) systems. 
This method is based on the discretization of the transfer 
function from the reference input of the closed loop system 
to the input of the plant which is defined as plant input 
transfer function (PITF) using the standard Pole-Zero 
Matching (MPZ) method [10]. Therefore the PIM method, 
appropriately termed a global digital re-design method 
takes into account the continuous time closed loop system 
performance in the formulation of a discrete-time closed 
loop control system. 

The main advantages of the new approach are the 
guaranteed closed-loop stability for almost all sampling 
periods, and the recovery of the continuous-time 
performance when the sampling period approaches zero. 
The result guarantees closed loop stability for all 
non-pathological sampling periods [14]. 
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In the digital redesign technique, a good-designed 
continuous time controller is converted to a digital controller 
counterpart. It is based on an optimal matching of 
continuous-time closed loop step responses of both 
continuous-time and discritized systems.    

In recent years, applications of discrete time controllers to 
power systems were reported in a number of publications [6, 
15 and 16]. It solved the transient stability problem 
addressed by analog controller, except that discrete time 
controller is just a matter of reprogramming a software 
program. [17].   

In [6] a technique based on sampled-data control was 
proposed for optimal discretizations of analog controllers 
while taking into account both closed-loop and intersample 
behavior. In [15] a discrete fuzzy PID excitation controller 
utilizing the bilinear transforms (Tustin's method) was 
implemented. This controller was developed by first 
designing discrete time linear PID control law and then 
progressively driving the steps necessary to incorporate a 
fuzzy logic control mechanism into the modification of the 
PID structure. The method in [16] presented a digital 
redesign method for discretization a continuous-time power 
system stabilizer PSS for a single machine power system 
using PIM method. This technique guaranteed the stability 
for any sampling rate as well as it took closed-loop 
characteristics into consideration. 

In this paper the traditional (Tustin’s method) and 
proposed (PIM method) of discretization methods are 
applied to digital design of an analog PID, PSS controllers 
and makes a comparison of discrete-time controllers which 
is presented through small signal stability of power system 
comprising of one machine connected to infinite bus and 
modeled through six K-constants. The components of power 
system are synchronous machine, exciter, power system 
stabilizer PSS and PID. 

Our goal in this paper is to develop a high performance 
digital controller for single machine infinite bus power 
system that takes into consideration the closed loop 
performance, which cannot be attained when using the 
traditional digital redesign method. The PIM method is a 
discretization scheme that can guarantee the stability for any 
sampling rates (non-pathological sampling rates) [9, 10, 18, 
and 12]. 

This paper is organized as follows. In section (2), the 
standard PIM digital redesign method is considered. Section 
(3), describes the system configuration that consists of three 
subsections, which are driving a power system model, 
explains the continuous time proportional integral and 
derivative PID controller model and explains the power 
system stabilizer model. Section (4), application of 
traditional Discretization method (Tustin’s Method) to 
Power System Model. Section (5), application of Proposed 
Discretization Method (PIM Method) to Power System 
Model. Describe the system response and analysis in section 
(6). Finally the conclusions are given in section (7). 

2. PLANT INPUT MAPPING METHOD 
The Plant Input Mapping (PIM) method is a global digital 
re-design method for converting an analog control system 
into a digital counterpart. By taking into account the closed-

loop characteristic of the analog control system in the form 
of (PITF), the PIM method can guarantee the stability for 
any nonpathological control rate, has good performances 
even for low control rates, and is applicable to a variety of 
analog control methods. Consider the continuous-time plant 
is linear, time-invariant, and strictly proper, and is denoted 
as 
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The plant transfer function )(sG is now discretized using 
the step invariant-model (SIM), which is a combination of 
the zero-order-hold (ZOH), the plant and the sampler. 
Let the step-invariant model of this plant be expressed as 
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The plant is expressed in Euler operator [19], which is 
defined as 

T
z 1

                                                                                    (3) 

Where z is the usual zee operator and T is the sampling 
interval. The Euler operator is used here for better 
numerical properties in digital control implementation and 
ease of relating discrete-time results to continuous –time 
counterparts [12]. Consider the analog control system 
represented in Fig. 1.  

 
 

Fig. 1 Continuous-time control system. 
Assume that the analog control system is internally stable, 
satisfies all the design specifications, and is realized with 
proper transfer functions, which given as; 
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In the PIM method, both the closed-loop characteristics 
and plant information are used in the discretization process 
in the name of the Plant-Input-Transfer Function (PITF). The 
PITF is the transfer function from the reference input to the 
plant input and is given by 
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The PITF is discretized in the standard PIM method. This is 
carried out using the Matched-pole-zero (MPZ) method [20] 
and the resulting discrete time model becomes the target 
PITF. The target discrete-time PITF can be expressed as 
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It is found that the denominator of the SIM of the plant 
appears in the numerator of DT-PITF. Choosing the 
discrete-time controller blocks [12] as; 
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Once this discrete-time PITF is obtained, this must be 
realized in closed-loop configuration, such as one shown in 
Fig. 2.  

 
 
Fig. 2 Discrete-time control system redesigned using the PIM method. 

And )( is an arbitrary stable polynomial of appropriate 
degree [9]. The actual PITF of this control system is given by 
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The polynomial )(Gn and )(Gd are known from of the 
plant (see Eq. 2). By equating the target and the actual PITF, 

it can be seen that the polynomial )(m must be in the 

numerator of polynomial )(Mn , the design goal is to 
choose )( , )( in Eq. (7) such that equations (6) and 
(8) match. For instance, Diophantine equation can be used to 
achieve this goal by this relation 

)()()()()(  MGG dnd                    (9) 
under appropriate degree conditions [7]. This can be solved 
using the eliminant matrix or a state space formulation 
[7,19]. 

3. SYSTEM MODELING   
3.1 Power system model 
Fig. 3 shows the one line diagram of the studied system 
which is a single-machine infinite bus model. The generator 
is connected to an infinite bus through a transmission line.  
 
 
 
 
 
 
 
 

Fig. 3 One machine to infinite bus system. 
The block diagram of single machine infinite bus (SMIB) 

system with controllers is shown in fig. 4. The power system 
considered in this study is the fourth order linearized 
one-machine and infinite bus system [21].

 

 
 

Fig. 4 Block diagram of power system model. 
 
Parameters K1……….K6 are the constant of linearized model 
of synchronous machine, EK is the gain of exciter, ET  is 

time constant of exciter, 0dT   is the d-axis transient open 
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circuit time constant, H is the inertia constant and dK  is 
damping coefficient. From the block diagram shown in Fig. 
4, then the following fourth order linearized one machine 
infinite bus system can be derived as described in [21]. 
The equation which describe the excitation system is  

E
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This may be written in the standard form 
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The equation which describe the field circuit is 
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This may be written in the standard form 
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The equation which describe the Machine mechanical 
dynamics loop is  
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This may be written in the standard form 
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The equation relating Δδ to Δω is  

s
B






                                              (16) 

This may be written in the standard form 
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The following fourth order of linearized one machine with 

infinite bus system. And can be rewritten in the following 

matrix form. 
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There are two inputs mP and refV , the output is Δω in the 

linearized system. But put refV equal 0. Then single input 

(
mP ), single output (Δω) linearized by the following matrix 

form. 
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From the equations (19) and (20), the following fourth order 
linearized one machine infinite bus system can be given in 
state variable form as follows: 

DUCXY
BUAXX


                                       (21) 

The state variables comprise the generator are speed 
deviation  , rotor angle deviation  , transient internal 
voltage deviation qE  and field voltage deviation fdE . 

The deviation of the angular velocity   is assumed to be 
measured as the output of the system. SMIB Test system 
data for the small signal stability investigation is taken from 
the reference [22]. The generator and external network data 
is given in table (1) and table (2). 
  

TABLE (1) DATA FOR THE SMIB SYSTEM 
 

H 4.63 Xq 0.55 

dK  
4.4 KE 50.0 

'
0dT  

7.67 TE 0.05 

B  
377.0 re 0.0 

Xd 0.973 Xe 0.997 
'
dx  

0.19   

 
All vales are in per unit to the machine rated MVA and 
voltage (Kv), and the time constants are in seconds. 
 

TABLE (2) THE K’S 
 

K1 0.5758 K4 0.5266 
K2 0.9738 K5 -0.0494 
K3 0.6584 K6 0.8450 

 
The values of K1…...K6 in the Table (2) are to be calculated 
according to the operating conditions of the generation 
system and connected power System. Details of these 
constants are given in appendix I. Using the data given in 
Table (1) and Table (2), the transfer function of the power 
system )(sG given by Fig. 4 and the state space equations 
given by Eq. 21 can be calculated using the MATLAB 
function SS2F in the signal processing toolbox and are given 
by: 
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33.12181.2108.0)( 234

23





ssss
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The power system transfer function )(sG poles and zero is 
given in table (3). 
 

TABLE (3) POWER SYSTEM TRANSFER FUNCTION POLES AND 
ZEROS 

  
poles Zeros 

-10.2216 j 3.6926 -10.0990 j 3.4842 
-0.1150 j 4.9334 0.0 

 

3.2 Generalized Model of Continuous Time PID 
Controller 

The proportional integral and derivative (PID) controller is 
widely used in process industries to control the plant 
(system) for the desired set point. A standard PID controller 
is known as the “three-term” controller, whose transfer 
function is generally written in the “parallel form” given by 
Eq. 23 or the “ideal form” given by Eq. 24. 
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where
PK is the proportional gain, 

IK the integral gain, 

DK  the derivative gain, 
IT the integral time constant and 

DT the derivative time constant. The “three-term” 

functionalities are highlighted by the following [23].The 

family of PID controllers is constructed from various 

combinations of the proportional, integral and derivative 

terms as required to meet specific performance 

requirements. In the parallel form of the PID controller, 

three simple gains
PK , 

IK  and 
DK  are used in the 

decoupled branches of the PID controller [24].The transfer 

function of PID controller given by Eq. 23. 
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This transfer function is non-proper and is therefore difficult 

to realise in practice. The proper transfer function must be: 

order )(sD ≥ order )(sN . These are generally easier to 

realise, and also reduce the susceptibility of the derivative 

action to noise. Then the Practical PID controllers become as 

shown in Fig. 5. 

 

Fig. 5 Modified PID controller structure. 
The deviation of the angular velocity  is assumed to be 
measured as the output of the system which is controlled by 
PID controller. Then the transfer function of the modified 
PID controller become as 

1
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The term








 1
1

s
acts as an effective low-pass filter on the 

D regulator to attenuate noise in the derivative block. If 
0  the original PID form is obtained. Typically 01.0  

to place the filter as far away from the derivative action as 
possible. It is generally impractical to move the filter further 
away as the control action becomes too much and can-not be 
realised. PID controller parameters are determined from the 
Ziegler-Nichols tuning given in table (4). 
 

TABLE (4) PID CONTROLLER PARAMETERS 
 

KP 15.5 
KI 5.0 
KD 0.0115 

 
Utilizing the parameter of the PID controller, the transfer 
function of the PID controller given can be calculated as; 
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01.0
555.151665.0)(  (27) 

The PID controller transfer function )(sPID poles and zero 
is given in table (5). 
 

TABLE (5) PID CONTROLLER POLES AND ZEROS 
 

Poles zeros 
-100 -0.930707 

0 -0.3227 

3.3 Power System Stabilizer Modeling 
The continuous time PSS type is widely used in the power 
system to improve the damping oscillations of the power 
system; sometime it is called the damping controller. 
Because the power system is very oscillatory, the objective 
of the PSS is to enhance the damping force and necessarily 
to improve the dynamical stability of the power system [22]. 
The PSS consists of a phase compensation block, a signal 
washout block, and a gain block as shown in Fig. 6. 

 
Fig. 6 Block diagram of Power System Stabilizer. 
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The transfer function of a continuous-time, lead-lag type, 
power system stabilizer is given by 
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The gain PSSk  is chosen by trial and error method and the 

washout time constant WT  is chosen in between 0 to 20 sec. 
The washout stage is used to prevent a steady-state voltage 
shift; 1T , 2T , 3T and 4T are time constants of the two 
phase-lead stages. The parameters of PSS are tuned by trial 
and error method, so as to achieve the desired damping ratio 
of the electromechanical mode and compensate for the 
phase shift between the control signal and the resulting 
electrical power deviation. The parameters of PSS are given 
in table (6). 

TABLE (6) PSS PARAMETERS 
 

PSSk  
20.0 

1T  
0.15 

3T  
0.05 

WT  
10 

2T  
0.05 

4T  
0.15 

 
Utilizing the data of the PSS given, the transfer function of 
the PSS described by Eq. 28 can be calculated as follows [25]. 
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The PSS transfer function )( sPSS poles and zero is given in 
table (7). 

TABLE (7) PSS POLES AND ZEROS 
 

Poles zeros 
-20.000 0 
-6.6667 -20.0000 
-0.1000 -6.6667 

 

4. APPLICATION OF TRADITIONAL DISCRETIZATION 
METHOD (TUSTIN’S METHOD) TO POWER SYSTEM 
MODEL 

Discretization of analog controllers by using bilinear 
method (Tustin’s method) is investigated [26]. By replacing 
each S-domain in analog controllers to Z-domain, according 
to this relation.  
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Then, the transfer function of a digital PID controller 
(Tustin’s method) is 
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And the transfer function of a digital PSS (Tustin’s method) 
is  
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                                                        (32)  
After design of discrete-time PID, PSS controllers for 
discrete-time control systems by using traditional method 
(Tustin’s method) compare it with design of discrete-time 
control system by using the proposed method (PIM) which 
presented in section II.    

5. APPLICATION OF PROPOSED DISCRETIZATION 
METHOD (PIM METHOD)TO POWER SYSTEM 
MODEL 

First design a suitable analog control system, and then 
discretized it by the Plant Input Mapping (PIM) method. 
The transfer function )(sG for the power system given by 
Eq. 22, the analog controller is placed on the block )(sB of 
Fig. 1 with the blocks )(sA and )(sC equal to 1. 
Simulations responses of the power system based on the 
linear model given by Eq. 21 are presented. The power 
system is subject to a step change in the mechanical torque 
denoted by mP , the signal to be controlled is the rotor 
speed denoted by  . The three controller 
blocks, )(A , )(C and )(B  are calculated using the 
procedure of design PIM method which presented in 
section II. 

6. SYSTEM RESPONSE AND ANALYSIS 
The test system has been modeled through Matlab 
programming. Fig. 7 show the simulations result of the 
analog PID, PSS controllers. The performance of the 
continuous-time PSS converge to the continuous-time PID 
controller. Fig. 8 to Fig. 15 show the responses and the plant 
input obtained using the control rates of 5Hz, 3.33Hz, 
2.5Hz, and 2.12Hz, respectively. Each controller is designed 
with the following control specifications in mind: 

a) Overshoot is less than 20% of the amplitude of the 
reference step signal. 

b) Settling time is faster than 10 sec. 
c) Steady state error is smaller than 0.5 degree. 

Fig. 8 to Fig. 11 show simulations results of the traditional 
digital design technique Tustin’s method. It is noticed that 
the Tustin’s controllers are stable for small sampling rates. 
On other hand, it is found that Tustin’s method for both PID, 
PSS controllers is violated when sampling interval becomes 
large. 

At the 5Hz and 3.33Hz control rate, the performance of 
Tustin’s PID controller almost matched with Tustin’s PSS 
but it produces an overshoot than Tustin’s PSS. At the 2.5Hz 
control rate, the Tustin’s response of both controllers 
oscillates and is not satisfactory but settle even after 8 sec. 
The Tustin’s response of both PID, PSS controllers becomes 
unstable and oscillates violently to such an extent that it is 
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not acceptable and doesn’t settle even after 10 sec at 2.12Hz 
control rate. 

Fig. 12 to Fig. 15 show simulations results of the proposed 
digital redesign technique PIM method. It is noticed that the 
proposed algorithm is stable for any sampling rate, as well 
as it takes the closed loop characteristic into consideration. 

At the 5Hz control rate, the response of PIM-PID 
controller produces a smaller overshoot than PIM-PSS 
(Overshoot is almost less than 10%), while both 
PIM-controllers are closely match to the analog case in Fig. 8. 
At the 3.33Hz control rate, the overshoot of the PIM-PID 
controller become larger than the corresponding case of 5Hz, 
PIM-PSS is settling faster than PIM-PID. It is noted from Fig. 
14 and Fig. 15 that when the sampling rate becomes large the 
proposed digital redesign technique PIM of PSS guarantees 
stability, be convergent to CT-PSS and it settles in the same 
time as the analog one with no steady state error and almost 
no oscillation but the PIM of PID controller produces a 
different transient response from analog one and it has a 
small overshoot. 
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Fig. 7 Dynamic responses to step change in the mechanical torque.  
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Fig. 8 Dynamic responses to step change in the mechanical torque in the 

presence of Tustin’s PSS and Tustin’s PID (sampling interval 0.2 s) 
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Fig. 9 Dynamic responses to step change in the mechanical torque in the 

presence of Tustin’s PSS and Tustin’s PID (sampling interval 0.3 s) 
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Fig. 10 Dynamic responses to step change in the mechanical torque in 
the presence of Tustin’s PSS and Tustin’s PID (sampling interval 0.4 s) 
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Fig. 11 Dynamic responses to step change in the mechanical torque in 

the presence of Tustin’s PSS and Tustin’s PID (sampling interval 0.47 s) 
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Fig. 12 Dynamic responses to step change in the mechanical torque in 

the presence of PIM-PSS and PIM-PID (sampling interval 0.2 s) 
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Fig. 13 Dynamic responses to step change in the mechanical torque in 

the presence of PIM-PSS and PIM-PID (sampling interval 0.3 s) 
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Fig. 14 Dynamic responses to step change in the mechanical torque in 

the presence of PIM-PSS and PIM-PID (sampling interval 0.4 s) 
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Fig. 15 Dynamic responses to step change in the mechanical torque in 

the presence of PIM-PSS and PIM-PID (sampling interval 0.47 s) 
 

7. CONCLUSION 
From the results obtained for different approaches to 
designing discrete-time PID, PSS controllers for a 
continuous-time system in a feedback configuration which 
applied to a single machine infinite power system for 
stability enhancement. It can be concluded that the 
proposed algorithm (PIM method) is stable for any 
sampling rates, while the traditional discretization method 
(Tustin’s method) is produce satisfactory results only; when 
the sampling period is sufficiently low.  
The results observed by simulations showed that  

a) The performance of Tustin’s PID controller almost 
matched with Tustin’s PSS but it produces an 
overshoot than Tustin’s PSS at small sampling rates. 
Tustin’s controllers are unstable and oscillate 
violently when sampling interval becomes large. 

 
b) Both PIM-controllers are stable for any sampling 

rates and closely match to the analog case, while the 
PIM-PSS is effective in the improvement of settling 
time but the PIM of PID controller produces a 
different transient response from analog one and it 
has a small overshoot. 

 
 

APPENDIX I 
The constants K1…... K6 are evaluated with transmission line 
resistance re=0 and are given as follows: 
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